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Abstract 

Mandelstam representation is shown to be valid for the total Bethe-Salpeter scattering 
amplitude in the ladder approximation. 

1. b#roduction 

In potential scattering, our knowledge in the analyticity properties of the 
scattering amplitudes is in a very satisfactory condition. We know that for a 
large class of potentials, the scattering amplitude satisfies Khuri's (1957) 
fixed-t dispersion relation and has a nonshrinking Martin domain (Martin, 
1966) in the momentum transfer t-plane. Starting from these properties, one 
can also arrive (Bowcock & Martin, 1959; Blankenbecler et al., 1960; 
Cheung, 1969) at the Mandclstam representation (Mandelstam, 1958) quite 
readily if the elastic unitarity condition is fully utilized. On the other hand, 
we are in quite a different situation with the Bethe-Salpeter:~ scattering. 
Here the scattering amplitude had been shown (Wanders, 1960) to satisfy 
the Mandelstam representation only for each perturbative order in the 
ladder approximation. As far as the total Bethe-Salpeter scattering 
amplitude is concerned, neither fixed-t dispersion relation nor the Martin 
domain is known to exist. This is particularly distressing if we recall that 
single-dispersion relation and the Martin domain are, in general, derivable 
in axiomatic field theory. It is the purpose of this note to present simple 
reasonings showing that total Bethe-Salpeter scattering amplitude in the 
ladder approximation indeed satisfies fixed-t dispersion relation and has a 
Martin domain. It will be shown further that Mandelstam representation 
is valid in the same approximation. 
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For simplicity, we shall consider two nonidentical neutral scalar nucleons 
of equal mass m with incoming momenta Pl and P2, interacting through a 
neutral scalar meson of mass/~. We take the outgoing nucleon to have 
momenta P3 and P4 and define the invariant variables. 

s - (Pl +P2) 2 

t = (P3 + P l )  2 

In the center-of-mass system of the two nucleons 

s = 4 ( k  2 + m z) 

v~here k is the center-of-mass momentum of either nucleon. The center-of- 
mass motion of the two nucleons may be separated from their internal 
motion and the Bethe-Salpeter wave function ~(x,y) in ladder approxima- 
tion can be written as 

where ~(p) satisfies the Bethe-Salpeter integral equation, 

- ( 2 - ~  [ t (p l  + p2) /2  + p ]  2 + m 2 - i~ 

1 f a4,, ~(P') ] (1.2) [(Pl + p2)/2 --p]2 + m 2 _ ie (p _ p,)2 + tz2 _ ie 

From the following Gaussian transform for the homogeneous term in the 
above integral equation, 

~b(p) = 8 (p PI 2 P  ~ ig2 - ( ~  ) 4 ~f dx *f dy ~f dzz 2 f (x, y , z, s ) 
0 0 0 

Okubo and Feldman (1960) had obtained an integral representation for 
the weight function f(x,y,  z,s ), 

ig 2 ( f dw f (u 'v ' z  + w's) f ( x , y , z , s )=  l + l--d~2 j du dv l + u + v  
0 0 0 

exp{i[(suv-m2(u+v)2 /~2 Z (1 Z 

(1.4)  
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The Bethe-Salpeter scattering amplitude in the ladder approximation is 
given in terms of the weight function by 

where 

oa 

ig 2 ( 
r ( . .  t) = - (5~)~ j &f(z ,  ~) exp [-iz(t + ~2)1 

0 

(1.5) 

f (z ,  s) = limf(x, y, z, s) (1.6) 
x---->oo 
t,---4.o0 

We shall see in the following that the Okubo-Feldman representation, 
together with the unitarity condition contains all informations about the 
analyticity properties of the Bethe-Salpeter scattering amplitude in the 
ladder approximation. 

2. The Martin Domain 

The Okubo-Feldman integral representation for f (x ,y ,z , s )  had been 
considered by Wanders (1960) using iteration method. Using his notation, 
we write 

i U-C#l f ( x , y , z , s )  =n: 1 f , (x ,y , z , s )  (2.1) 

with 

and 

2 |  " ~ ,  
~r(s. t) = g ~ / \ i ~ !  T.(s. t) (2.2) 

f~ =1  

f,(z, s) = limf.(x,y, z, s) 
X--~eO 
y--->o0 

(2.3) 

o0 

T,(s, t) = - i  f dzf,(z, s)exp [-iz(t +/,2)1 (2.4) 
o 

Wanders had shown that for real s < 4m 2, the scattering amplitude T.(s, t) 
in the nth order iteration is regular in the whole t-plane except for a cut on 
the negative real axis from t = -(n/~) 2 to -oo and is bounded by eit I ~ with 

> 1/2 and c, e independent of n. Since this is true for a finite segment of 
s, it will also be true for all s into which T,(s, t) can be analytically continued 
from s < 4m 2 real. This result dearly shows that the cut for T,(s, t) on the 
t-plane gets further away from the origin as the iteration order n gets larger. 
In particular, T.(s,t) is regular for It] < / . L  2 for all iteration orders. Also, 
from Wanders' upper bound on T,(s, t), the iteration expansion converges 
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uniformly for g2 < 167r 2. It follows that for a given s, the total Bethe-Salpeter 
scattering amplitude in the ladder approximation is analytic in a non- 
shrinking Martin domain (Martin, 1966) 

I tl < t* 2 (2.5) 

Although this is a small analyticity domain compared to the whole 
t-plane cut from -(ntz) z to -oo inside which T,(s, t) is analytic, it will be 
sufficient to derive the Mandelstam representation for T(s, t) if the s-plane 
analyticity and unitarity condition are fully taken into account. 

3. Single-Dispersion Relation for T(s, t) in the Cut s-Plane 

From the Okubo-Feldman representation equation (1.4), it is clear that 
f(x,y, z,s) can be analytically continued into the upper half s-plane because 
in replacing s by s~ + is2 with s2 > 0 and real, we get an extra exponential 
factor 

( s ~ u v w )  
exp 1 + u + v 

in the integrand of equation (1.4). From equations (1.5) and (1.6), it follows 
that f (z ,s)  and T(s, t) are likewise analytic inside the domain Ims > 0. 

In the lower half of s-plane, Wanders had also obtained an upper bound 
for ITn(s, t)] for each iteration order n 

< 1 _ 4-mZ1"-5/2 ] ir,(s,t) I ~ [ i s  - A, Az 
4mZl,-3/2 + Is 

for 0 < 0 < 7r/2 or 3rr/2 < 0 < 2~r (3.1) 

and 

IT.(s, t) I < -is _ 4ma]._3/a + js _ 4~},_5/z for 7r/2 < 0 < 30/2 (3.2) 

where 0 = arg(s - 4m a) and A~ and A2 are energy-independent constants. 
One can consider the sum of the iterative series and find the following 
upper bounds, 

1 
IT(s, t)[ < [Is - 4rn21312A l + Is - 4m215/ZA2] \1-~5~2 ] ls _ 4mZ] . 

n=O 

for 7r < 0 < 3rr]2 (3.3) 
and 

IT(s,t)l < [ I s -  4m21312A1 + ]s-4mZlS/2A2] ( g2 1 

,=1 \16zr2] I sin 01" IS -- 4m2[" 

for 37r/2 < 0 < 27r (3.4) 
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For illustration, let us take g = 4,r. It is then clear from the above bounds 
that T(s, t) is analytic in the lower half of s-plane except for a unit semicircle 
around s = 4m 2 and a region extended from s = - i m  2 to oo - iE as defined by 

[sin01 [ s - -4m g] < 1, 3zr/2 < 0 < 27r (3.5) 

It will be difficult to get a larger analyticity domain for T(s, t) from the 
iterative series. To proceed further, we go back to the Okubo-Feldman 
representation in equation (1.4). We notice tha t f ( x , y ,  z, s) can be analytically 
continued into the lower half z-plane since in replacing z by z 1 - iz 2 with 
zz > 0 and real, we get the following exponentially falling factors 

[ 2/~ 2 
u + v)] L-/Z u z2(1 + u + v) - T (zl z2) (1 + exp 

in the integrand of equation (1.4). z = 0 is a branch point f o r f ( x , y , z , s ) ,  but 
we can make a cut on the negative real axis -oo < z < O,f(x ,y ,  zl - iz2,s) is 
then regular in the lower half z-plane but not on the cut. This z-plane 
analyticity implies that the weight function f ( x , y ,  zl - i z z , S  ) in the lower 
half z-plane is completely determined, for instance, by its values along the 
negative imaginary axis. Now taking z purely imaginary and negative and 
s < 2m 2, the w-integration in the Okubo-Feldman representation may be 
rotated to the negative real axis through the lower half of w-plane because 
in replacing w by wx - iw2 with w2 > 0 and real, we again get exponentially 
failing factors 

[ ~ (2m2--s)uv+m2(u2+v2)+tz2(l+u-bv)] 
exp (1 + u + v) - w2 

2 l + u + v  

in the integrand of equation (1.4). In performing the above rotation 
z = - iz2 - w lies in the lower half of z-plane and hence f ( x , y , - i z z  - w,s)  
is always inside its analytieity domain. At the lower integration limit near 
w = 0, but with w lying in the lower half-plane, the behavior of the integrand 
is also regular because for z-imaginary, the factor 

exp - i  1 + u + v 

will go to zero exponentially as w-~ 0. After such a rotation of the w- 
integration, the Okubo-Feldman representation becomes 

f ( x , y , z , s ) =  l + ~  f du dv dwfO v , z - w , s )  

o o o 
('FSblV--m2(u+v)2 /L2 z ( 1 - - z ) ( 1  

explt [ l + u ~ -  v -/z2] ( - w ) -  + u + v ) }  

(3.6) 
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Since this integral equation is valid in a finite domain in s and z, it holds 
everywhere within the analytic regions off(x,y ,  z,s). I f  s is now replaced by 
s~ - is2, we will get an exponential damping factor 

exP(l  s2uv w~ 
+ u + v  ] 

in the integrand of equation (3.6). This means thatf(x,y, z, s) can be analyti- 
cally continued into the lower-half s-plane. This, together with previous 
results means thatf(x,y,z,s) and hencef(z,s) and T(s, t) are analytic in the 
entire s-plane with a cut from 4m 2 to ~. It follows that T(s, t) satisfies the 
following dispersion relation, 

n-1 S N ? Im T(s', t) 
T(s, t) = ~ a,s ~ + - -  j ds' (3.7) 

,=o ~ s'N(s' - s - i~) 
4m2 

4. Mandelstam Representation for T(s, t) 

We shall now consider the effect of the elastic unitarity condition, which 
is applicable for all real s i> 4m 2 for the Bethe-Salpeter amplitude in the 
ladder approximation and can be written as 

ImT(s , t )=O(s-4m2)~/(s-4m2)  f T(s, cosO')T*(s, cosO")d~' (4.1) 
47r 

where 
cos 0" = cos 0 cos 0' + sin 0 sin 0' cos (~b' - ~) 

Whenever applicable, the elastic unitarity has the following consequence: 
Suppose that for a given real s/> 4rn 2, T(s, t) is analytic in the t-plane inside 
an ellipse E(0,-4kEIr) with loci at t = 0 and _@2 and right-hand extremity 
at t = r then Im T(s, t) will be analytic inside a confocal but larger ellipse 

for the same value of k 2. This important property of the elastic unitarity 
had been utilized previously in proving the validity of Mandelstam represen- 
tation in potential scattering (Bowcock & Martin, 1959; Blankenbecler 
et al., 1960; Cheung, 1969) and also in proving the necessity of N-particle 
production amplitudes in field theory (Cheung & Toll, 1967; Cheung, 1968). 
In all these cases, a scattering amplitude was shown to satisfy a Mandelstam 
representation if elastic unitarity is applicable for all real s >~ 4m 2 and if the 
following two conditions are fulfilled. 

(a) The scattering amplitude has a nonshrinking Martin analyticity 
domain in the momentum-transfer t-plane. 

(b) For a given t inside the Martin domain, the scattering amplitude has 
a single-dispersion relation in the cut s-plane. 
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We can now apply this lemma to the problem under consideration. We 
shall refer interested readers to Bowcock & Martin (1959), Blankenbecler 
et al. (1960) and Cheung (1969) for details. Since we have shown in the above 
that all the necessary conditions are satisfied, we reach the conclusion that 
the total Bethe-Salpeter scattering amplitude in the ladder approximation 
has the following Mandelstam representation, 

N-I M-1 tN s M 1" p(s', t') 
T ( s , t ) =  .=o ~ a. t"  +,,,=o ~ bmsm + r r ~  !~ dt' 4.,2 dS ' s 'Mt 'N(S ' - - s ) ( t '  -- t)" 

(4.3) 
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